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a b s t r a c t

Mechanistic models of population, community and ecosystem dynamics require the mathematical
description of trophic interactions in the form of functional response equations. There is a wealth of
such equations developed to incorporate the effects of multitude forms of foraging behaviour including
intra-specific interference competition. However, there has been no attempt to include inter-specific
behaviours beyond the obvious consumer–resource relationship, and thus, mechanistic models of com-
eywords:
unctional response
esponse surface experiment

nter-specific competition
nterference
rinidadian guppy

munities and ecosystems remain limited in their incorporation of individual behaviour. In this paper
we extend existing functional response models to account for both intra- and inter-specific interference
behaviours. Together with response surface experiments, these can be used to investigate the role of
both types of interference for a given species’ resource acquisition efficiency. We illustrate this with data
from foraging trials of guppies Poecilia reticulata in the presence and absence of a competitor species,
Hart’s killifish Rivulus hartii. Our results show that in the studied example, intra-specific interference is
important and stronger than inter-specific competition.
. Introduction

Resource competition plays a central role in the understanding
f ecological processes as diverse and important as natural selec-
ion, population regulation and community dynamics (Begon et al.,
996; Tilman, 1982). As a consequence, it has been the subject of a

arge number of field experiments (reviewed by Connell, 1983; Sih
t al., 1985) and extensive analyses (e.g. Gurevitch et al., 1992).
istorically, the field has been dominated by phenomenologi-
al approaches that assess community, population or life-history
atterns that result from the addition of inter- or intra-specific
ompetitors (Inouye, 2001). An alternative approach is to explic-
tly investigate the competitive mechanisms behind the observed
atterns, such as resource acquisition or interference, to predict the
onsequences of competition.

Functional response equations are a key component of any

echanistic model describing interactions between consumers and

heir resources. They model the rate of resource consumption as a
unction of resource density (Holling, 1959; Solomon, 1949). They
an be broadly classified in two categories: consumer-independent

∗ Corresponding author at: Laboratoire Ecologie-Evolution, CNRS UMR 7625,
cole Normale Superieure, 46 rue d’Ulm, 75005 Paris, France.

E-mail addresses: alopez@biologie.ens.edu, andresls@ucr.edu
A. López-Sepulcre).

304-3800/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.ecolmodel.2010.10.011
© 2010 Elsevier B.V. All rights reserved.

and consumer-dependent (Abrams and Ginzburg, 2000). The first
type of models (reviewed by Jeschke et al., 2002) assumes that,
for a given density of resources, their per capita consumption by
consumers is independent of consumer numbers. It is important
to note that this does not mean that they assume no competition.
When embedded in a dynamic consumer–resource model, resource
density will decrease as consumer numbers increase, decreasing
average consumption as they move down the resource gradient
of the functional response. Such a scenario represents exploita-
tive competition for resources, where consumers only affect each
other through the consumption of a common resource. In contrast,
consumer-dependent models (reviewed in Jeschke et al., 2002;
Skalski and Gilliam, 2001) incorporate a direct effect of consumer
density in the functional response. This scenario mimics interfer-
ence competition, where individuals directly affect each other’s
efficiency of resource consumption. The importance of distinguish-
ing between the two sets of models lies in the fact that exploitative
and interference competition can lead to very different predic-
tions regarding evolution (Ishii and Shimada, 2008; Toquenaga,
1993), and community dynamics (Lomnicki, 2009; Abrams and
Ginzburg, 2000; Kuang, 2002). Moreover, the co-evolution of char-

acter displacement among competitor species depends on the
relative intensities of exploitative and interference competition, as
well as the costs of the latter (Grether et al., 2009).

The importance of intra-specific interference between foraging
consumers can be assessed by integrating response-surface exper-
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http://www.sciencedirect.com/science/journal/03043800
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ments and consumer-dependent functional equations (Kratina
t al., 2009). Response surface experiments consist of competi-
ion trials where consumer and resource density are manipulated
nd related to a response variable of interest (Inouye, 2001). In
his case, the response in question is the resource intake rate
y a focal consumer. The results are then used to parameterize
onsumer-dependent functional response equations and evaluate
he magnitude and significance of the parameters associated with
onsumer density.

So far, only one-species functional response models exist. These
llow for the modeling of inter-specific competition for resources
s long as this is a mere result of resource depletion. Inter-specific
ompetitors, however, can also be an important source of inter-
erence (Beddington, 1975; Crowley and Martin, 1989). When
xplaining community composition or ecosystem functioning, the
ype of competition, again, matters (Ishii and Shimada, 2008).
owever, there is currently no functional-response equation that

ncorporates interference between species and allows for a mech-
nistic modeling of the process.

In this paper, we review current consumer-dependent func-
ional response models (Beddington, 1975; Crowley and Martin,
989; DeAngelis et al., 1975) and extend them to incorporate

nter-specific a well as intra-specific interference. We subsequently
llustrate their parameterization with data from a laboratory
unctional-response experiment on a system of two competing
tream fish species: the Trinidadian guppy Poecilia reticulata and
art’s killifish Rivulus hartii. By fitting a variety of alternative mod-
ls and parameterizations representing different assumptions on
he mode and intensity of competition, we will assess the relative
mportance of intra- and inter-specific competition as well as make
nferences on the nature of the competition.

. Incorporating interference in the functional response

The rate of consumption of resources (or prey) by an individual
onsumer (or predator) as a function of resource density has been
raditionally modelled according to one of three response curves
escribed by Holling (1959). They are commonly known as type

, II and III functional responses, and follow, respectively, a linear,
aturating or sigmoidal shape. With some notable exceptions (e.g.
empf et al., 2008; Sarnelle and Wilson, 2008), most organisms
tudied with a density-independent model have been shown to
ave a type II functional response, instead of a type I or III, which
an be written as:

(N) = aN

1 + ahN
. (1)

ere, N is the density of resources, a is the attack rate and h is the
andling time. The attack rate a (or volume-specific encounter rate
etween consumer and resource) is equivalent to the inverse of
he average search time between successful resource captures. The
andling time h represents the time spent by a consumer handling
he resource before he can continue the search. Different biological
actors potentially affecting the handling time include digestion,
illing of the prey or simply the time taken to ingest the prey.
olling’s equation can be derived by assuming that a predation
vent consists of two episodes or states: searching for and han-
ling of resources (see Appendix A for details). While searching
ime diminishes with an increase in resource density, handling time
s assumed to be constant, thus limiting the acceleration of intake
s resource density increases.
Holling’s original equations do not incorporate consumer inter-
erence, but type II models have been extended to incorporate it.
hese can be derived by incorporating a third episode (or state) in
he resource consumption process: interference time. During this
ime, which increases with consumer density, individuals cannot
ogical Modelling 222 (2011) 419–426

search for resources. Two main models have been derived depend-
ing on whether interference can occur at any time or only during
the search phase.

If interference can only be incurred by searching competi-
tors, the result is a Beddington–DeAngelis (BD) funtional response
(Beddington, 1975; DeAngelis et al., 1975; Huisman and De Boer,
1997), which reads:

f (N, F) = 1
1 + ahN + cF

, (2)

where F is the density of consumers (henceforth considered as the
focal species) and c is the interference coefficient, which can be
decomposed into the product of two parameters: the per capita
encounter rate between consumers and the duration of inter-
ference (respectively called b and d in Appendix A). Since the
two parameters are not estimable independently in our empiri-
cal example, we do not decompose c in its two components. Using
the same notation but assuming that handling competitors can
also interfere, we get a Crowley–Martin (CM) model (Crowley and
Martin, 1989):

f (N, F) = 1
(1 + ahN) · (1 + cF)

(3)

In order to extend either of the two single-consumer models,
we need to assume a fourth state representing the time wasted
in inter-specific competition. Therefore, the foraging time of a
focal consumer can be split in four possible states: searching, han-
dling, intra-specific interference and inter-specific interference.
Appendix A contains the formal derivations of the two-consumer
BD and CM models. These derivations are made without taking
into account any spatial effect for predation (Cosner et al., 1999).
The resulting equations are intuitively simple, merely involving the
splitting of the interference component of the equation into two
additive components representing the two types of competitor. The
BD extension can be written as:

f (N, F, C) = aN

1 + ahN + cF + c′C
(4)

Here, C represents the number of the competitor consumer species,
while c and c′ represent the “time” wasted in intra- and inter-
specific competition, respectively.

Similarly, the extension to the CM model can be written as:

f (N, F, C) = aN

(1 + ahN) · (1 + cF + c′C)
(5)

The relative importance of resource competition, intra-specific
interference competition and inter-specific interference competi-
tion can be evaluated from the estimates of ah, c, and c′ respectively.
Although the realised strength of either mechanism will depend
on the actual ecological conditions (i.e. the relative density of
resources, conspecifics and heterospecific competitors) these three
indexes indicate the sensitivity of resource acquisition to the three
behavioural mechanisms.

3. The guppy-killifish system

We illustrate the ideas and analyses proposed in this paper
using a system of two stream fish: the guppy Poecilia reticulata
and Hart’s killifish Rivulus hartii, from the Northern Range Moun-
tains of Trinidad, in the Southern Caribbean. Guppies and killifish
co-exist in two types of habitat separated by barrier waterfalls and
differing in their predation regime. Upstream from the barrier, they

represent the only two fish species, while downstream they share
habitat with bigger predatory fish such as the pike cichlid (Crenici-
chla alta) or the wolf-fish (Hoplias malabricus), which are known to
consume adult guppies (Gilliam et al., 1993; Reznick and Endler,
1982). These two types of habitat are commonly referred to as
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igh predation (HP) and low predation (LP). It has been hypoth-
sized that killifish and guppies may feed on each other’s larvae
Reznick, 1982; Reznick and Endler, 1982). The differences between
he two habitats in predation regime and other environmental fac-
ors have major consequences to the life-history of the guppies
Reznick, 1982; Reznick and Endler, 1982) and killifish (Walsh and
eznick, 2008, 2009). Throughout their colonization, guppies have
ransitioned multiple times from HP to LP environments, repeat-
dly evolving lower growth rates, reduced reproductive allocation,
elayed maturity and bigger offspring size, among other traits
Reznick, 1989; Reznick and Bryga, 1996). When artificially translo-
ated to a low predation environment, high predation guppies have
hown to evolve these traits in a very small number of generations
Reznick et al., 1990, 1997).

Although there is a good accumulation of evidence for the
mportance of mortality in guppy life-history evolution, the mecha-
ism through which mortality exerts a selection pressure is not yet
ell understood. It remains unclear whether the evolution from
igh to low predation phenotype is a direct individual response
o lower mortality or a response to increased competition given
igher population densities in populations with reduced mortality.
he latter hypothesis is known as the indirect effects of mortality
ypothesis, and has found support in some laboratory experi-
ents (Bashey, 2008). Low predation streams, indeed, have higher

ensities of both guppies and Hart’s killifish than high predation
opulations (Gilliam et al., 1993). If competition, whether intra- or

nter-specific, is an important selective force in low predation gup-
ies, predictive models of life-history evolution must incorporate
he link between individual life-histories, population dynamics and
esource availability. Understanding this link relies on the descrip-
ion of the appropriate functional response.

. Materials and methods

.1. Functional response experiments

We performed a total of 150 feeding trials on a total of 19
ndividual focal guppies (9 from HP and 10 from LP) under three
ompetition treatments: (1) no competition, where the focal guppy
as alone; (2) intra-specific competition, where a similar-sized

uppy was placed in the same feeding tank; and (3) inter-specific
ompetition, where a similar-sized killifish was placed in the feed-
ng tank. These treatments were crossed with fish origin (High
redation or Low Predation). We also performed 30 trials with
total of 10 individual killifish (4 from HP and 6 form LP) in

rder to estimate their attack rates a′. These trials followed the
ame protocol as the no-competition trials in guppies (i.e. the fish
as left to forage alone) and had the same range of food density

reatments.
Feeding trials were performed in a 10 L tank with a simulated

ircular drift of 60 L/h. We used mayflies (Family Ephemeroptera)
hat were dropped on the surface of the water as feeding items.
dult guppies and killifish are known to drift-feed in the wild, with
rift invertebrates representing an important percentage of their
iet (Zandona et al., in preparation). Wild mayflies between 0.25
nd 1 mm were collected with drift-nets from streams in Trinidad
nd kept frozen, to be thawed before each experiment. To estimate
he shape of the functional response, each treatment combination
as repeated for five different resources densities: 1, 2, 3, 5 and

0 mayflies per tank (i.e. 0.1, 0.2, 0.3, 0.5 and 1 mayfly per litre).

esources densities were kept constant by immediately dropping
new item after one had been eaten.

We aimed at using each fish was used as focal individual for all
he competition treatments and resource-levels in the experiment,
llowing to partition the variation within and between individuals.
ogical Modelling 222 (2011) 419–426 421

Due to escape mortality, this was not always possible and hence
the design is unbalance. However, given that we randomized the
order of treatments and resource levels, the sample can be consid-
ered unbiased. Competitors for the competition treatments were
randomly selected from the stock tank. When outside the exper-
imental tank, guppies and killifish were housed together in 40 L
tanks, to avoid any artefact in the experiments due to the addition
of an unfamiliar fish. For each experiment, individuals were placed
in the experimental tank and allowed to habituate to observer pres-
ence for 10 min before an observation period of 10 min. During
this period, mayflies were added to the tank and the number of
feeding events were recorded. For each feeding event, a new larva
was added in the tank. Repeated trials of same individuals were
separated between 12 and 24 h. Standard lengths for all fish were
measured after the experiment.

4.2. Model fitting

We assessed the importance of different mechanisms (inter-
specific and intra-specific interference at different foraging phases)
and variables (size, predation) on the functional response by fitting
and comparing a series of alternative functional-response mod-
els to the data from the experiment. For all models, the response
variable was the number of prey eaten in an interval of 10 min,
explained by the functional response model. We fitted two types of
models: Beddington–DeAngelis (Eq. (4)) and Crawley–Martin (Eq.
(5)), which can be used to infer whether interference occurs only
at the searching phase or also at the handling phase, respectively.
All models are modifications of the basic BD and CM non-linear
equations in which different parameters can be made null (e.g.
c = 0 implies no intra-specific interference), constant or linear com-
binations of the explanatory variables: size (whether absolute or
relative to its competitor) or predation ecotype (HP or LP). To
avoid false-positives due to multiple-testing, we reduced the set
of models to a total of 26 models (see Table 1) that included
biologically relevant combinations of variables (Burnham and
Anderson, 2002).

For illustration purposes, we describe below the determinis-
tic component of the complete model for a Beddington–DeAngelis
response, with all possible explanatory variables.

E(Y |N, F, C)∼ aN

1 + ahN + cF + c′C
(6)

where coefficients a, h, c and c′ are linear combinations of the fol-
lowing explanatory variables:

a, h ∼ population (HP/LP) + focal fish size
c, c′ ∼ population (HP/LP) + focal fish size + size ratio between focal
fish and competitor

Note that in the absence of competitors, the functional
responses described by both Eqs. (4) (BD) and (5) (CM) reduce to a
Holling type II curve (F and C are null) like in Eq. (1). The comparison
between the no competition and intra-specific competition treat-
ments allows for the estimation of the intra-specific interference
coefficient c (F = 1/volume and C = 0). The inter-specific competition
treatment allows for the calculation of the inter-specific interfer-
ence coefficient c′ (with F = 0 and C = 1/volume).

We considered alternative random structures around the
deterministic model described above. First, we considered three
distributional assumptions for the residual errors: Poisson, Neg-

ative Binomial and Double Poisson. The negative binomial and
double Poisson distributions allow for overdispersion (higher vari-
ance than mean). While in the negative binomial the variance
increases with the mean, the double Poisson – a distribution from
the double exponential family – models the variance independently
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Table 1
Model selection of fitted functional response models for guppies.

Typea Parameter dependenciesb AICc Log-likelihood �AICc Weight

a h c c′

CM pop size 1 1 631.52 308.26 0.00 0.40
CM 1 pop + size 1 1 632.32 308.66 0.80 0.27
CM 1 size 1 1 633.84 310.55 2.32 0.12
CM size pop 1 1 634.18 309.59 2.65 0.10
CM 1 pop 1 1 634.20 310.73 2.68 0.10
CM 1 1 1 1 643.06 316.27 11.54 <0.01
CM 1 1 pop pop 643.86 314.43 12.34 <0.01
CM 1 1 ratio ratio 647.52 316.26 16.00 <0.01
BD pop size 1 1 647.51 316.35 16.19 <0.01
BD 1 pop + size 1 1 645.80 316.45 16.38 <0.01
CM pop + size pop + size pop + ratio + size 648.64 307.01 17.12 <0.01
BD 1 size 1 1 649.08 318.17 17.56 <0.01
BD 1 pop 1 1 649.55 318.40 18.03 <0.01
BD size pop 1 1 649.97 317.49 18.45 <0.01
CM 1 pop + size c = c′ 656.30 321.78 24.78 <0.01
CM 1 pop + size 1 0 656.52 321.89 24.99 <0.01
BD 1 1 1 1 657.54 323.51 26.02 <0.01
BD 1 1 pop pop 658.73 321.86 27.21 <0.01
BD 1 pop + size 1 0 661.64 324.45 30.12 <0.01
BD 1 1 ratio ratio 662.00 323.50 30.48 <0.01
BD pop + size pop + size pop + ratio + size 665.79 315.59 34.27 <0.01
BD 1 pop + size c = c′ 670.43 328.85 38.91 <0.01
HII 1 pop + size 0 0 710.49 349.98 78.97 <0.01
CM 1 pop + size 0 1 712.66 349.96 81.14 <0.01
BD 1 pop + size 0 1 712.66 349.96 81.14 <0.01
HII pop + size 0 0 0 839.89 415.27 207.37 <0.01
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a CM: Crowley–Martin; BD: Beddington–DeAngelis; HII: Holling type II (no interf
b pop: dependent on population (HP-LP); size: dependent on fish size; ratio: depe

mission.

f the mean (Efron, 1986). Second, since the same fish was used for
ll competition and resource density treatments, we also tested
hierarchical model that included focal individual as a random

ffect. We tested the random structure of the functional response
sing the full deterministic model outlined above, with all con-
idered fixed effects included before selecting the fixed effects.
hese models were fit by Restricted Maximum Likelihood (REML)
n order to avoid biases in the variance estimates (Zuur et al.,
009). The appropriate error structure was decided by compari-
on of their corrected Akaike Information Criteria (AICc, Burnham
nd Anderson, 2002). Once the error structure was decided with
he full model, we fitted several combinations of fixed effects via

aximum Likelihood. Models were also compared by their AICc
nd the calculation of Akaike weights (Burnham and Anderson,
002) in order to test for the importance of covariates and interfer-
nce coefficients and perform model averaging when needed. The
eason to follow a two-stage approach is two-fold. First, it is incor-
ect to compare AIC values calculated with REML with those using
L (Pinheiro and Bates, 2000; Zuur et al., 2009). Second, using a

ubset of fixed effects to test the error structure can lead to fixed-
ffect variance being spuriously absorbed by random effects (Zuur
t al., 2009). All models were fit with package gnlm in program R
R Development Core Team, 2005). To check the robustness of our
esults to the choice of random effects, we repeated the selection
f fixed effects given alternative error structures. Estimates of fixed
ffects and model weights did not change with the choice of random
ffects.

To estimate the product ah (for comparison with c and c′)
ccounting for parameter uncertainty, we used Monte Carlo simu-
ation. For that, we used a guppy size of 20 mm and the best model

efining a and h (see Section 5, Eq. (6)). Parameter values for the
quations were randomly drawn from normal distributions with
he means and standard deviations estimated from the model fit-
ing. The distribution for the index estimate is based on 10,000
imulations.
e).
t on the relative size of the competitor and focal fish; 1: independent; 0: parameter

5. Results

AICc comparisons of our full mixed models with all the fixed
terms indicate a double Poisson as the most likely error distri-
bution, indicating data over-dispersion (�AICc = 13.4 between a
double Poisson and a Poisson errors for the complete model) and a
very high within-individual variation (i.e. individuals are not self-
consistent and hence, individual identity is not predictive of its
behaviour) that justifies the exclusion of individual identity as a
random effect (�AICc = 2.4 between the fit with and without indi-
vidual random effect for the complete model).

Table 1 shows the results of the model selection analysis for gup-
pies. The first obvious result is that Crowley–Martin-type models
are better supported by the data, with no Beddington–DeAngelis-
type function receiving more than 0.01% of the information weight
(Table 1). This suggests that interference between competitors is
possible both during the attack and the handling phases of forag-
ing; BD models only assume interference in the searching phase
(i.e. a forager cannot be interfered with once it has captured the
prey, see Section 2). A second consistent pattern is that all 14 best
models (>99.9% of the AIC weight) include interference competi-
tion, both intra- and inter-specific. There is, however, very little
support for either type of competition to be size or population
dependent. The five most parsimonious models — those with 99.7%
of cumulative weight and �AICc < 4 (Burnham and Anderson, 2002;
Johnson and Omland, 2004) — differ in whether they include or not
an effect of size and population on the attack rate and handling
time (Table 1). Since no model had a weight superior to 95%, we
used model averaging to get robust estimates of the parameters
(Burnham and Anderson, 2002). Parameters of the averaged model

are shown in Table 2. Data and curves for the average model are
shown in Fig. 1.

Results for the Rivulus-only functional response (Table 3) are
ambiguous with respect to the importance of population or size
in attack rate or handling time but clearly support the addition of
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Table 2
Model selection for fitted functional response models for killifish with no competitors.

Parameter dependencies AICc Log-likelihood AAICC Weight

a h

pop size 178.51 84.45 0.00 0.35
1 pop + size 178.53 84.46 0.02 0.34
pop + size 1 180.07 85.24 1.56 0.16
size pop 180.38 85.39 1.87 0.14
pop + size pop + size 184.55 84.45 6.04 0.02
size 0 234.94 115.25 56.43 <0.0001
pop + size 0 236.72 114.90 58.21 <0.0001
pop 0 245.15 120.35 66.65 <0.0001

Fig. 1. Functional responses of guppies for the six treatment combinations. Number of resources items eaten during the 10 min of observations. Fitted lines represent the
predictions of the best model for a fish of 18 mm (dotted), 20 mm (solid) and 22 mm (dashed) of standard length.

F
r

ig. 2. Functional responses of high and low predation Rivulus killifish with no competitio
epresent the predictions of the best model for a fish of 24 mm (dotted), 27 mm (solid) an
n. Number of resources items eaten during the 10 min of observations. Fitted lines
d 30 mm (dashed) of standard length.
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Table 3
Parameter estimates of the final CM-type competition model.

Parameter Estimate SD

a0 11.380 2.55
apop 0.703 1.01
asize 0.034 0.12
a′

0 5.180 10.01
a′

pop 0.370 1.23
a′

size
0.190 0.37

h0 0.350 0.11
hpop −0.014 0.02
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We follow the standard assumption that consumers and
hsize −0.008 0.005
c 5.37 0.62
c′ 2.27 0.47

andling time in the model, i.e. a Type II curve. Fits of the aver-
ge models of the killifish functional response are shown in Fig. 2.
n contrast with the guppy model, the complete model’s AIC sup-
orted a simple Poisson as appropriate for describing the error
tructure (�AICc = 2 over a double Poisson). Table 3 shows the
arameter estimates derived for the CM-type competition models
fter model averaging. Note that parameters related to the search
fficiency a of killifish are derived from the single killifish experi-
ents also after model averaging.
Table 2 shows the estimates and standard deviations for the

nterference competition coefficients c and c′ estimated from the
veraged guppy model. From these, we can calculate the rela-
ive importance of both types of competition as their quotient
/c′ = 2.5 ± 0.7. The relevance of competition in our model is stressed
y the high cumulative weight (�0.99) of models incorporating two
eparate competition terms (Table 1). The ratio indicates a much
reater importance of intraspecific versus interspecific competi-
ion. The estimated values of ah for a 20 mm fish are 4.25 ± 1.82
nd 4.31 ± 1.90 for high and low predation fish, respectively.

. Discussion

We have illustrated how to expand commonly used functional
esponse equations to incorporate the effects of inter-specific
ompetitors. More importantly, we have shown how the param-
terization and analysis of such equations with response-surface
xperiments can be used to gain mechanistic understanding of the
ature of competition. In our case study with guppies and killifish,

or example, we have learnt three main lessons. First, foraging inter-
erence can occur during handling as well as the searching phase.
n other words, foragers can prolong the handling time of captured
rey due to interference. We can infer this because the guppy func-
ional response follows a CM and not a BD model, which assumes
hat guppies are interfering with each other even when they’re
ot searching for preys. Since the handling phase is very short and
an be interfered upon, it is likely that it does not represent diges-
ion but, rather, ingestion or other external manifestations of prey
andling. Second, intra-specific competition is likely to be more

mportant than competition between species for drift invertebrate
eeding, the main food source for Rivulus in nature (Fraser et al.,
999; Owens, 2010).

The importance of intra-specific competition is significant for
he evolution of life-hisotries, which are known to evolve rapidly
n the guppy in response to changes in predation pressure (Reznick
t al., 1990, 1997). When predation pressure declines and inter-
pecific competition is weak, the consequent increase in population
ensity can increase the importance of intra-specific competitive

s the main selective force (Miller and Travis, 1996). To detect such
ndirect effects it is important to perform experiments addressing
he mechanisms behind intra- and inter-specific competition, such
s functional responses, rather than the demographic patterns.
ogical Modelling 222 (2011) 419–426

There is a vast array of functional response equations that
incorporate a variety of intra-specific behavioural and physio-
logical mechanisms (Jeschke et al., 2002; Skalski and Gilliam,
2001). Combined with consumer–resource models, they provide
an extremely valuable tool to gain mechanistic understanding
on consumer–resource dynamics. Several studies point at the
importance of predator behaviour on predator-resource dynam-
ics (e.g. Abrams and Matsuda, 2004; Coolen et al., 2007; Krivan
et al., 2008). More generally, derivation of ecological patterns from
individual mechanisms has been advocated as having a higher pre-
dictive power, particularly in the face of environmental change
(Sutherland, 2006; Sutherland and Norris, 2002). If we are to extend
this approach to the understanding of more complex systems,
functional responses need to incorporate behavioural interactions
among multiple consumer species or resource types. Our develop-
ment is a first step in this direction, by incorporating interference
competition between two consumer species. The approach could
be extended to incorporate other foraging interactions between
species such as inter-specific attraction or commensalism, as well
as interactions between multiple resources (e.g. between different
prey species), such as mutualistic defence strategies or mimicry.
This way, just as population biology has gained enormously from
the incorporation of individual processes in population models
(Sutherland, 1996), we can increase our mechanistic understanding
of community ecology by incorporating inter-specific behaviours
into community models via multi-species functional response
equations.
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Appendix A. Derivation functional response equations with
interspecific competition

A.1. Beddington–DeAngelis type

The feeding functional response of a given individual will
depend on the density of resources N, the density of inter-specific
competitors C and the density of conspecific consumers (exclud-
ing the focal individual), which we denote as F and is defined as
the inverse of the average time T elapsed between the acquisi-
tion of two food items. For the one-species Beddington–DeAngelis
derivation, this time is decomposed into the time spent searching
(TS), handling resources (TH) and wasted in interference competi-
tion (TW). The incorporation of inter-specific competition requires
the decomposition of TW into conspecific (TWC) and inter-specific
interference (TWI). Hence:

T = TS + TH + TWC + TWI (A1)
resources are identical and homogeneously distributed through-
out the volume. If a is the search efficiency (attack rate), defined as
the volume monitored by a consumer per unit time, the number of
resource items a given consumer encounters per unit time is aN,
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nd thus the time spent searching for a given resource items is

S = 1
aN

. (A2)

The time wasted in interference with the conspecific population
can be calculated as the number of encounters with conspecifics

nc) multiplied by the time wasted per encounter (d). If b is the
er capita consumer encounter rate and we assume that handling
nd interference time are small with respect to searching time, the
robability of a searching consumer encountering another search-

ng consumer is bF, which results in:

WC = d · nc = d · TS · bF = TS · cF (A3)

here c is the intra-specific competition coefficient c = bd.
Denoting the inter-specific competition coefficient as c′ we can

qually derive the total time wasted in interference with intra-
pecific competitors, which will now depend on the competitor’s
ncounter rate as:

WI = Tsc′C (A4)

Finally, if we rewrite the handling time TH as h, the frequency of
ngestion is

(N, F, C) = 1
TS + h + TWC + TWI

hich, using Eqs. (A2)–(A4) can be re-written as:

(N, F, C) = aN

1 + ahN + cF + c′C

.2. Crowley–Martin type

If we assume that either consumer species can waste interfer-
nce time both at the searching and handling stages, we need to
ecompose wasted time TW into a searching and handling com-
onent. The time wasted interfering in the searching stage is
quivalent to Eqs. (A3) and (A4). The times wasted in interfering
ith conspecifics while handling equals:

WHC = h · cF (A5)

here h·cF is the probability of encountering a competitor while
andling. Similarly, we can calculate the time wasted in inter-
pecific competition while handling as:

WHI = h · c′C (A6)

Eqs. (A5) and (A6) lead to

(N, F, C) = 1
TS + h + TWSC + TWHC + TWHI

Poisson which, using Eqs. (A2)–(A6) can be written as:

(N, F, C) = aN

(1 + ahN) · (1 + cF + c′C)
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